Functional Outcome of Human Adipose Stem Cell Injections in Rat Anal Sphincter Acute Injury Model
نویسندگان
چکیده
Anal incontinence is a devastating condition that significantly reduces the quality of life. Our aim was to evaluate the effect of human adipose stem cell (hASC) injections in a rat model for anal sphincter injury, which is the main cause of anal incontinence in humans. Furthermore, we tested if the efficacy of hASCs could be improved by combining them with polyacrylamide hydrogel carrier, Bulkamid. Human ASCs derived from a female donor were culture expanded in DMEM/F12 supplemented with human platelet lysate. Female virgin Sprague-Dawley rats were randomized into four groups (n = 14-15/group): hASCs in saline or Bulkamid (3 × 105 /60 μl) and saline or Bulkamid without cells. Anorectal manometry (ARM) was performed before anal sphincter injury, at two (n = 58) and at four weeks after (n = 33). Additionally, the anal sphincter tissue was examined by micro-computed tomography (μCT) and the histological parameters were compared between the groups. The median resting and peak pressure during spontaneous contraction measured by ARM were significantly higher in hASC treatment groups compared with the control groups without hASCs. There was no statistical difference in functional results between the hASC-carrier groups (saline vs. Bulkamid). No difference was detected in the sphincter muscle continuation between the groups in the histology and μCT analysis. More inflammation was discovered in the group receiving saline with hASC. The hASC injection therapy with both saline and Bulkamid is a promising nonsurgical treatment for acute anal sphincter injury. Traditional histology combined with the 3D μCT image data lends greater confidence in assessing muscle healing and continuity. Stem Cells Translational Medicine 2018;7:295-304.
منابع مشابه
Local Electrical Stimulation with Mesenchymal Stem Cells Improves Anatomy and Functional Recovery Long after Anal Sphincter Injury in a Rat Model
Hypothesis / aims of study We have previously optimized electrical stimulation (ES) parameters for up-regulation of mesenchymal stem cell (MSC) homing cytokines in the anal sphincter in a rat model. Our hypothesis is that low grade ES acts as a conditioning injury which upregulates homing cytokines that attract and retain MSC at the the area of previous injury thereby stimulating regeneration. ...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملExpression of Neurotrophins in Adipose-derived Stem Cells during in vitro Culture and Posttransplantation in Parkinsonian Rat Model
Background: Adipose tissue stem cells (ASCs) cause faster repair of damaged tissue posttransplantation by releasing growth factors in neurodegenerative diseases. ASCs secrete factors in the culture medium called conditioned medium (CM) in vitro. This study investigated the expression of neurotrophin genes in vitro culture and transplant of ASCs in Parkinsonian rats. Materials and Methods: In th...
متن کاملO 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold
Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...
متن کاملThe effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury
Objective(s): It has been shown that adipose-derived mesenchymal stem cells (AD-MSC) have protective effects in acute kidney injury (AKI). This study was conducted to assess the therapeutic effects of AD-MSC in rats subjected to acute kidney injury by 45 min of renal ischemia followed by 48 hr of reperfusion (I/R). Materials and Methods:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018